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SUMMARY 

The use of digital computers ix performing non-numeric operations is 

rendered possible by the evolution of new computer lxtgxages such as Formac. 

In this paper the problem of using a digital computer to derive the equations 

of motion of a particle in a general orthogonal curvilinear coordinate system 

is considered. Since this operation involves a formulation in terms of first 

and second order differential coefficients, it provides a good demonstration 

of a computer's capability to do non-numeric work, and to assist in the 

formulation process which normally precedes the numerical data processing 

stage. Moreover, this particular problem serves to illustrate the advantages 

of the mathematical techniques employed. Because of the invariant nature of 

the formulation with respect to coordinate transformations, these techniques 

can be used to reduce complicated formulation problems to routine computer 

operations. 

nate transformation equations relating the curvilinear coordinates to an 

orthogonal Cartesian set. 

these ideas. 

equations are supplied as input, the computer will output the equations of 

motion. The equations of motion obtained will be relative to the curvilinear 

coordinate system specified by the coordinate transformation equations used 

b 

In applying this procedure, the user need only know the coordi- 

A computer program has been written to implement 

When this program is zsed and the coordinate transformation 
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as input. Res-dts are presented for  the following curvilinear coordinate 

systems: spherics1 polar, cylindrical polar, oblate spheroidal and prolate 

spheroidal. 

ITJTRODUCTION 

Research undertaken with the object of promoting man-computer inter- 

action has directed attention to the use of computers for non-numeric 

operatims. 2 i  p r t , i c d . a r ,  fix possibility of' using digital computers to 

derive the equations of motion and of  mathematical physics in a general 

cuzvilinear coordinate system has been explored. Traditionally, these 

functions were consldered to be the exclusive preserie of the scientist. 

Nevertkeless, as is shown in this paper, digital computers can participate 

in the performance of such tasks. Bowever, if the extensive logic and stor- 

age capabilities of these ccmputers are to be used to full advantage, a 

departure from conventional techniques of fornilation may be necessary. The 

i extent to which conventional methods should be modified to enable digital 

compGters to participate effectively in non-numeric operations has been 

examined. For example, when conventional nethods are sed, the form which the 

equations of motion and of mzthematictil physics assumes depends on the 

coordinate system used to describe the problem. This dependence, which is 

I 

due to the practice of expressing vectors in terms of their physical compo- 

nents, can be removed by the simple expedient of expressing all vectors in 

terms of their tensor components. As a consequence of the geometrical 

simplification inherent in the tensor method, the operations involved in 

formulating problems in unfamiliar curvilinear coordinate systems can be 

reduced to routine computer operations. It is this aspect of the tensor 

method which makes it so attractive for the types of computer applications 

contemplated in this paper. 



M mass of particle 

E( i) dxi - 
dt 

t time 

A ..1 sjrst-r; cocr&L-Latcs 

Yi system coordinates 

Ti physical component of force 

v potential function 

w gradient of potential function 

SiLpercript s 

a, I, 5 ,k indices of contravariance 

ANALYSIS 

A formulation of the equations of motion of a point mss, which is valid 

in all orthogonal clmilinear coordinate systems, may be obtained by expressing 

all relevant vectors in terms of their tensor components, rather than in terms 

of their physical components. 

equations of motion. 

quantities, part of the force system is assumed to be given in the form of 

the gradient of a potential function. Such a force assumes the covariant 

form (ref. 1). 

their physical components is also assumed. Moreover, since acceleration and 

velocity are contravariant vectors, the equations of motion have to be 

formulated from a system of covariant, contravariant and physical quantities. 

Since compatibility requires that the two sides of every equation must bal- 

ance with respect to their covariant or contravariant properties, it is 

This formulation gives rise tG the tensor 

In order to indicate the method of dealing with mixed 

The existence of forces which are h a m  only in terms of 
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necessary t o  convert a l l  the force terms t o  the contravarlant form. 

appropriate conversions a re  made, the res;ilting equations a re  i n  a form well 

sui ted t o  non-numeric compter operations. 

'&hen 

h i t t i n g  the d e t a i l s  of the derivation, the procedure may be described 

a s  follows: l e t  the coordinate transformation equations r e l a t ing  a curvil inear 

coordinate system x, t o  an orthogonal Cartesian system y, be given by 

yi = y'(x1x*x3) i = 1,2,3 (1) 

I n  terms of the first and second order p a r t i a l  d i f f e r e n t i a l  coefficients 

of y with respect t o  x, the  equations of motion of a p a r t i c l e  of mass M 

r e l a t ive  t o  the curvil inear coordinate system x assume %he following form: 

( 2 )  

where i,j,k,a = l,2,3 and the  summation convention f o r  indices is  assumed 

t o  be operative. That is, i f  a given index occurs twice i n  any expression, 

the expression must be summed with respect t o  t h a t  Index. An exception t o  

this ru le  occws when repeated indices a re  enclosed in  parentheses. 

Parentheses around an index imply that  the sirmmation convention I s  t o  be 

suspended fo r  t ha t  index. T h i s  means t h a t  f o r  each value of "i," equation (2 )  

must be summed on a,j, and k. For example, when equation (2) i s  summed on 

a, it appears as  follows: 
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( 3 )  

The l e f t  side of th i s  equation must also be summed on 

of' these indices i s  permitted t o  t & e  the values l,2,3, i n  turn,  equation (3) 

assijmes the  follcwing form: 

J and k. When each 
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This eqmtion is in a form well suited to routine non-numeric computer opera- 

tions. 

generality of this equation, which is applicable to any space of three 

dimensions. 

dimensions, it m y  be permanently stored in the computer. 

obtain the equations of motion in any system of coordinates, the only informa- 

tion required is the special form of equation (1) relating that system of' 

coordinates to the orthogonal Cartesian coordinates y'. For example, 

consider a transformation of' coordinates specifying the relation between the 

sphericzl polar coordinates xi and the orthogonal Cartesian coordinates y'. 

In this case, equaticn (1) becones: 

The large n-mher of tern ap2earing in equatiom (4) is due to the 

Moreover, since this equation is applicable to any space of three 

Hence, in order to 

See sketch (a). 

yl =xi sin x2 cos x3 

y2 =XI sin x* sin x3 

y3 =x' cos x2 

sketch (a) 



These coordi,mte trsnsformation equations were supplied as inpltt t o  an E34 

7094 computer, xhich was programed f o r  non-naneric operations. 

ccmpu%er w a s  instructed t o  perform the operations involved in equation (4 ) ,  

the following output w a s  obtained in Fortran langxage. 

When the 
I 

I 
I 

c o m m  0llTpur 

F O R I = 1  

The a - p r e s s i o n  i n p t  f o r  Y(I) i s  given below. 

x( 1 ) *FMcsm( x( 2 ) *mcm ( x( 3 ) $ 

FOR I = 2 

The expression inpa f o r  Y ( 1 )  i s  given below. 

x ( 1 ) *mcsm( x ( 2 ) ) *mcsm( x ( 3 ) ) $ 

FOR I = 3 

The expression input for Y(1) i s  given below. 

x( 1) *FMccos( x( 2) )$ 

Equations of Motion 

FOR I = 1 

The equation for I = 1 is  given below. 

M*( P( 1) -R( 2) *2- O*X( 1) -R( 3) *2 O*X( l)*FPICSIN( X( 2) ) w2.0) $; 

=DPHI(  TAU( I)$ 

F O R I = 2  

The equation for 

M*( P( 2)  *X( l)M2.0+R( l)*R( 2)*X( 1)*2.0-R( 3)**2.0*X( 1)=2.O*FMCSIN( X( 2) )*FMCCOS( X( 2) ) )$  

=DPHI( 2)+TAU( 2)*X( 1)$ 

FOR I = 3 

The equation for I = 3 i s  given below. 

M*(P(3)*X(l)w2.O*$%K!SIN(X( 2))*2*0+R(l)*R(3)*X( l)*FMCSLN(X( 2))**2.0*2.0+R( 2)*R( 3)* 

I = 2 i s  given below. 

x ( 1 ) **2. o*mcsIN( x( 2) ) *FMccos ( x( 2 )  ) *2.0) $ 

=DPHI( 3 )+TAU( 3 )  *X( 1) *FMCSLN( X( 2) ) $ 
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JOB ACCOUNTING 

COMP/LOAD ExECUTrvE 

TIME TIME TIME 

ON MIN. MIN. 

dxi R(i) = - 

d2xi P(i) = - 
at2 

at 

In terms of conventional mathematical sjmbolism, these equations assume 

the following form: 

Because of its generality, equation (4) is applicable in a l l  coordinate 

systems. Therefore, in order to obtain the equations of motion in any other 

coordinate system, all that is required is to supply the computer with the 

appropriate coordinate transformation equations. A s  a further illustration of 

the procedure involved, consider the equations of motion in a cylindrical 

polar system of coordinates. 

equations are: see sketch (b). 

In this case, the coordinate transformation 
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y l  = x1 cos x2 

y' = x1 sin x- 

y = 2  

7 

When these coordinate transformation equations were ased to evaluate the 

terns of equation (4), the following computer output was obtained. 

y3=x3 

* 
)e--- 

1 -  \ 
I \ 
1 

* 

\ 
/ \ 

Y '  I 

sketch (b) 

COMPUTER o m u r  
FOR I = 1 

The expression input for Y ( 1 )  is given below. 

x(1)*FMccos(x(2)) $ 

Y2 
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FOR I = 2 

T h e  expression input for Y ( 1 )  is given below. 

x( 1) *FMcsm( x( 2) ) $ 

FOR I -3 

T h e  expression input f o r  Y ( 1 )  is given below. 

x(3) $ 

EQUATIONS OF MOTION 

T h e  equation fo r  I = 1 is given below. 

M*( P( 1) -R( 2) ~ 2 .  PX( 1) )$ 

=DPHI(  TAU( I)$ 

T h e  equation for 

M* ( P( 2 ) *X ( 1) H 2  . OtR ( 1) *R( 2) *X ( 1) *2.0) $ 

=DPHI( 2)+TAU( 2)*X( 1)$ 

T h e  equation fo r  

M*P(3)$ 

I = 2 is  given below. 

I = 3 is given below. 

=DPHI( 3)+TAU( 3)$ 

JOB ACCOUNTING 

COMeLOAD 

TlME TIMF: 

ON MIN. 

037.78 1.15 

mmm 
TIME 

MIN. 

.14 
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Translating these equations from Fortran language to conventional mathematical 

symbolism yields the following: 

Prolate Spheroidal Coordinates 

Another interesting system of orthogonal curvilinear coordinates are the 

Coordinate sarfaces are obtained by rotating prolate spheroidal coordinates. 

a family of confocal ellipses and hyperbolae about their major axes. Rotation 

of these conic sections gives rise to a system of prolate spheroids and hyper- 

boloids of two sheets. 

completes the system of orthogonal surfaces. The curvilinear coordinate 

systems generated by the curves of intersection of these surfaces are useful 

in certain quantium mechanical problems. (Ref. 2). The transformation equa- 

tions relating this system of coordinates to the orthogonal Cartesian system 

are as follows: 

A family of planes through the axis of rotation 

yl = a si& x1 sin x2 cos x3 

y’ = a sid XI sin x2 sin x3 

3 = a cosh x1 cos x2 

In order to obtain the equations of motion relative to a prolate spheroidal 

system of coordinates, these transformation equations were substituted for 

equation (1) in the computer program. 

Omitting the print-out in Fortran language, the equations of motion were 

obtained as follows: 

Execute time wits 1.63 minutes. 
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2 dxl dx2 
d t 2  a t  d t  

M r az(sin2 x2 + sinh2 x1) * + 2a2 s i n  x2 cos x - - 
L 

dxl dxl d x 2  dx2 + a' sinh x1 cosh x1 - - - a2 sinh x1 cosh x1 - - d t  d t  d t  d t  

1 

- a2 sin2 x2 sinh x1 cosh x1 dxs dx3 - at -1 a t  

+ 2a2 sinh x1 cosh x 1 - ax1 - dx2 + a2 s i n  x2 cos x- 7 - dx2 - dx2 
d t  d t  St d t  

- a2 s i n  x2 cos x2 sinh2 x1 
d t  d t  

h sin2 x2 + sinh2 xl T~ + - 
= a ( , /  ) e  

1 dx l  ax3 M a2 sin2 x2 sinh2 x1 d2x3 + 2a2 sin' x2 sinh x1 cosh x - - i dt2  d t  d t  

+ 2a2 s i n  x2 cos x2 sinh2 x1 
dt d t  

a(p = a s i n  x' si& x1 73 + - 
axs 

Oblate Spheroidal Coordinates 

If a family of confocal e l l ipses  and hyperbolae are ro ta ted  about t h e i r  

minor axes, a system of surfaces i s  generated. 

spheroids and hyperboloids of one sheet ( r e f .  3) .  

with a family of planes through the axis of rotat ion,  const i tute  a family of 

orthogonal surfaces. 

curves of intersect ion of these surfaces are cal led oblate spheroidal 

coordinates. Oblate spheroids are sometimes re fer red  t o  as planetary 

These surfaces are the  oblate 

These surfaces, together 

The curvil inear coordinate systems generated by the  



e l l ipso ids ,  because the Earth and the planet Jupi ter  are approximately of this 

form. The transfwmation equations relat ing t h i s  system of coordinates t o  the  

orthogonal Cartesian system are  as  follows : 

These transforma 

y1 = a cosh x1 s i n  x2 cos 2 
f = a cosh XI s i n  x2 s i n  9 

y" = a si& x1 cos x2 

ion equations take the place of  equation (1) i n  the compu,r. 

I n  t h i s  case, the  time required t o  execute the program was 1.63 minutes. 

hitting the  print-out i n  Fortm langmge, the equations of motion r e l a t ive  

t o  a system of oblate spheroidal coordinates were obtained i n  the following 

f om:  

a2(sinh2 x1 + cos2 x") - d2x + a2(sinh x1 cosh x') - dxl  - dxl 
at2 d t  d t  

2 d x l  ax2 1 d x 2  ax2 - 2a2 cos x2 s i n  x - - - a2 si& x1 cosh x - - 
d t  d t  d t  d t  

- a2 cosh x1 sinh x1  sin2 x2 dt d t  

a2(sinh2 x1 + cos2 x2) d2x2 - + a2 s in  x2 cos x 2 - d x l  - dxl 
at2 d t  d t  

dxl ax2 a2 s i n  ~2 cos x 2 - dx2 - dx" + 2a2 sinh x1 cosh x1 - - - 
d t  d t  d t  dt 

- a2 cash' x1 s i n  x2 cos x2 d t  d t  



. 
2 dxl ax3 M a2 cosh2 x1 sin2 x2 + 2a2 sinh x1 cosh x1 sin2 x - - i at2 dt dt 

+ 2a2 cosh2 x1 sin 5 cos x’ - - 

= a cosh xp sin x? T3 + - dT 
a 2  

operations if they are properly programmed. Research indicates that these 

computers can be used more effectively for this pm-pose, if all vector 

quantities are expressed in terns of their tensor components rather than in 

terms of their physical components. 

simplification inherent in the tensor method, that the operations involved 

It is a consequence of the geometrical 

in formulating problems in unfamiliar curvilinear coordinate systems can be 

reduced to routine computer operations. To implement the proposed method, a 

digital computer program has been written to perform a variety of non-numeric 

operations. In order to illustrate the ideas embodied in this report, the 

program has been used to derive the equations of motion of a poLnt mass in 

any coordinate system requested by the user. The results are presented in 

Fortran langzige. However, f o r  the convenience of readers, the Fortran 

statements are translated to conventional mathematical symbolism. The 

exploitation and extension of these techniques should lead to a substantial 

reduction in the man hours required to formulate and process engineering and 

scientific problems. 
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